ohm's law | Resistance| Electrical Energy


The relationship between Voltage, Current and Resistance in any DC electrical circuit was firstly discovered by the German physicist Georg Ohm.  
               
Ohm's law states that the current through a conductor between two points is directly proportional to the voltage across the two points. Introducing the constant of proportionality, the resistance,one arrives at the usual mathematical equation that describes this relationship
I={\frac {V}{R}},
where I is the current through the conductor in units of amperes, V is the voltage measured across the conductor in units of volts, and R is the resistance of the conductor in units of ohms\
 

Ohms Law Example

For the circuit shown below find the Voltage (V), the Current (I), the Resistance (R) and the Power (P).
ohms law circuit
 
Voltage   [ V = I x R ] = 2 x 12Ω = 24V
Current   [ I = V ÷ R ] = 24 ÷ 12Ω = 2A
Resistance   [ R = V ÷ I ] = 24 ÷ 2 = 12 Ω
Power   [ P = V x I ] = 24 x 2 = 48W
 
Power within an electrical circuit is only present when both voltage and current are present. For example, in an open-circuit condition, voltage is present but there is no current flow I = 0 (zero), therefore V*0 is 0 so the power dissipated within the circuit must also be 0. Likewise, if we have a short-circuit condition, current flow is present but there is no voltage V = 0, therefore 0*I = 0 so again the power dissipated within the circuit is 0.

As electrical power is the product of V*I, the power dissipated in a circuit is the same whether the circuit contains high voltage and low current or low voltage and high current flow. Generally, electrical power is dissipated in the form of Heat (heaters), Mechanical Work such as motors, Energy in the form of radiated (Lamps) or as stored energy (Batteries).

Electrical Energy in Circuits

Electrical Energy is the capacity to do work, and the unit of work or energy is the jouleJ ). Electrical energy is the product of power multiplied by the length of time it was consumed. So if we know how much power, in Watts is being consumed and the time, in seconds for which it is used, we can find the total energy used in watt-seconds. In other words, Energy = power x time and Power = voltage x current. Therefore electrical power is related to energy and the unit given for electrical energy is the watt-seconds or joules.
 
electrical energy 
 
Electrical power can also be defined as the rate of by which energy is transferred. If one joule of work is either absorbed or delivered at a constant rate of one second, then the corresponding power will be equivalent to one watt so power can be defined as “1Joule/sec = 1Watt”. Then we can say that one watt is equal to one joule per second and electrical power can be defined as the rate of doing work or the transferring of energy.

Somenath Bhattacharyya

Somenath Bhattacharyya is the Author & Founder of this website. He worked in a private company as a Electronics Engineer. He is passionate about Blogging & Digital Marketing. facebookinstagram

Post a Comment

Please Select Embedded Mode To Show The Comment System.*

Previous Post Next Post